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PURDUE Overview of Presentation
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Cost is a risk for the MPAR program

* Introduction
— Trends In Electrical Engineering
— What is a Digital Array Radar

e Current DAR Effort

— Approach
e GaN/ SIGE two chip channels

— Results

» Weather-Specific Related Issues
— Dual Polarization

e Low Cost Perspectives
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To create a low cost radar it seems imperative to leverage
the trends occurring at the component level.

A.) Massively Integrated RF Components, System on Chip.
-SiGe and CMOS RFIC’s

B.) Widebandgap Semiconductors
-GaN and SiC - llI-V semiconductors

C.) Severe Impact from Digital Portion of Systems
-Calibration, adaptability, and correction by feedback
from the digital domain
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Digitization of the signal at each
element.

The combining of signals is done in the

digital domain.
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PURDUE DAR Program Concept V1
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Measured DAR Version | Prototype Subarray

On display outside for dual polarization.
A thorough overview and demo is planned at 1 PM in 1350 NWC (Next door)
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Traditional Hybrid
Radar Module

Advanced Integration

Digital I— @e’l’ <
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Massively integrated  High Power
SiGe chip transceivers GaN MMIC

Image from Eurofighter’s radar
http://www.airpower.at/news06/0922_captor-e/index.html

Remove Component Cost By Leveraging Commercial
Integration Practices, remove T/R module

The 400 Watt Radiating “Laptop”
Panel

Planar “laptop-like” Integration — Simple
4 Layer Board for Analog Components




PURDUE Digital Beamforming Architectures

Overlapped Subarray
(OSA) Digitization

Can form on the order of M
simultaneous beams with purely
analog beamformers

Antenna array (N elements)
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Digital at Every Element with
Hierarchical Digital Backend

Digitizer modules, intermediate
processors, and final signal
processor work together
intelligently and flexibly

Antenna array (N elements)

Element
Level
Calibration

T/R modules (N elements)

N digitizer modules

Beamforming
through
digital
processing




.RU.BPUE High Power Plastic Antenna Array
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Composite multilayer polymer
antenna

Large Area Integration
8x8 antenna only array constructed
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«>35 Watts per element has been demonstrated
with limited cooling on RF GaN antenna panel

«Air cooling upto 50 % duty cycle with 25 watts
radiated

«Simulations show 80% efficiency at 7 Watts for
GaN Amplifiers for 2.7 to 2.9 GHz

Plastic QFN packages are therefore possible
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Cost is Reduced Through Simplified Packaging
« Comparison of Air Cooling Techniques

e Atleast 10°C cooler than without a fan

» All tested points above 22dB of Gain

« Base Plate (Solid), Input Stage (Dash) and Output
Stage (Dash-Dot)

Plastic Packaging and Simple
Cooling Enabled through the
Efficient Modes of Operation

RF Interconnects

Temperature and Efficiency verses Duty Cycle _
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Up to 50 Watts Demonstrated in a Plastic Package
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Simulated MPAR MMIC Performance
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RF Poyr =10 Watts

PAE =75%

Large Signal Gain = 28dB

Drain voltage = 28 volts

Est. Production Cost: ~$12/chip

Cree GaN Process capable of supporting
ultra-high efficiency MPAR power amps
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Important Solid State Trends:

« Continuous increase of the frequency limits, i.e. f; and f,_, (I1I-V’s)
* Increase of output power (wide bandgap transistors)
» Low-cost RF transistors for consumer mass markets (Si-based)
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The mm-“Wave” in Industry and Academia
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Fully-integrated mm-wave transceivers reported at ISSCC.

Colu4rtesy of Harish Krishnaswamy at USC
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* Recent Demonstrations — 8 element receive only array that is 2 by 3
mm in Jazz .18 micron SiGe — Works from 6 to 18 GHz (UCSD)

Multichip Module
Replaced by
Multireceiver Silicon IC
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Example of 16
“motherboard-like RF array integration” elements on a chip
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SiGe integration allows for more than 1 radar channel per chip. Beyond (SOC) System on Chip

Sierra Monolithics (SMI) 2x2 WiMAX Transceiver
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— Two independent direct-conversion I/Q Tx/Rx channels per board
— 54 programmable registers

— Flexibility in gain, filtering, DC offset compensation, etc.

— Programmable RF LOs on each board

o




PURDUE

Unregistered HyperCam 2

Tracking Demonstration
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Furdue DAR Tracking Demo
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PURDUE Dual Polarization Variation of DAR
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The integrated SiGe transceiver is very
useful for dual polarization

- Gain . Bandwidth - Enable
-DC Offset =+ -- . - Gain REERR - Enable

There are two channels on one
integrated circuit, so one IC handles
both inputs from the antennas.
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-40 dB isolation between
polarizations

T A Measured simultaneous transmit on each
SRR I s At B polarization

Independent waveform synthesis at each antenna
will allow for compensation of polarization
mismatches to improve polarization metrics

Measured V
and H data of |+~
LFM pulse P
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Cost Is a risk for the MPAR program

_everaging the advances at the component level will be useful for
pushing the cost curve down

*Massive Integration - SiGe
*High Power Plastic Operation — GaN
Digital Utilization — Digital at Every Element
-Let the broader electronics world do the heavy lifting

Digital at every element has been demonstrated for a 16 element
panel.

A low cost phased array can be built if commercial
trends and practices are leveraged.
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A detailed overview of the array and a demonstration of
the performance will be shown at 1 PM in room

Next door, 1 PM
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5) Synchronization

Digital backend Control board
designed, laid out, and
populated in-house

Wrote firmware for FPGAs and
software for host PC interface

3) Silicon Integration Utilized
integrated Sierra Monolithics
2x2 WiMAX SiGe transceiver

1) Antenna Panelization Antenna
was designed, analyzed for mutual
coupling, fabricated, and tested

4) Digital Processing Quadrant
boards perform data conversion
and element-level processing

2) Plastic High Power Packaging
Multi-layer panel and plastic
packaging designed to house efficient
GaN T/R modules
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