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Overview of Presentation

• Introduction
– Trends in Electrical Engineering

– What is a Digital Array Radar

• Current DAR Effort
– Approach

• GaN/ SiGE two chip channels

– Results

• Weather-Specific Related Issues
– Dual Polarization

• Low Cost Perspectives

Cost is a risk for the MPAR program
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Trends in Electrical Engineering

To create a low cost radar it seems imperative to leverage 
the trends occurring at the component level.  

A.) Massively Integrated RF Components, System on Chip.
-SiGe and CMOS RFIC’s

B.) Widebandgap Semiconductors
-GaN and SiC – III-V semiconductors

C.) Severe Impact from Digital Portion of Systems
-Calibration, adaptability, and correction by feedback 
from the digital domain
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What is a Digital Array Radar?
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Initial Concept

DAR Program Concept V0

Traditional 
Multilayer 
Board

Antenna

GaN and 
SiGe



IDEAS Microwave Laboratory
Electrical and Computer Engineering

CAD Representations of 
Final Prototype Subarray

DAR Program Concept V1

Analog
Antenna,
GaN and SiGe

Digital
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Memory
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DAR Program Demonstrator 

Measured DAR Version I Prototype Subarray

On display outside for dual polarization.
A thorough overview and demo is planned at 1 PM in 1350 NWC (Next door)
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Low-Cost DAR Radar
“2 Chip Radar” SolutionTraditional Hybrid 
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Advanced Integration
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Remove Component Cost By Leveraging Commercial 
Integration Practices, remove T/R module

The 400 Watt Radiating “Laptop” 
Panel

High Power 
GaN MMIC

Massively integrated 
SiGe chip transceivers
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4 Layer Board for Analog Components
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Digital Beamforming Architectures

Antenna array (N elements)
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Can form on the order of M 
simultaneous beams with purely 
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intelligently and flexibly
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High Power Plastic Antenna Array

Composite multilayer polymer 
antenna

Large Area Integration 
8x8 antenna only array constructed

•>35 Watts per element has been demonstrated 
with limited cooling on RF GaN antenna panel

•Air cooling upto 50 % duty cycle with 25 watts 
radiated  

•Simulations show 80% efficiency at 7 Watts for 
GaN Amplifiers for 2.7 to 2.9 GHz

•Plastic QFN packages are therefore possible

16 element panel
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GaN Results

Cost is Reduced Through Simplified Packaging
• Comparison of Air Cooling Techniques

• At least 10°C cooler than without a fan

• All tested points above 22dB of Gain

• Base Plate (Solid), Input Stage (Dash) and Output 
Stage (Dash-Dot)

Up to 50 Watts Demonstrated in a Plastic Package

Plastic Packaging and Simple 
Cooling Enabled through the 
Efficient Modes of Operation
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¾ 2-Stage GaN MMIC
¾ 2 mm output stage
¾ 2.7-3.1GHz operation
¾ 50 Ohm In/Out
¾ Est. Chip Size = <4 mm2

¾ RF POUT = 10 Watts
¾ PAE  = 75%
¾ Large Signal Gain = 28dB
¾ Drain voltage = 28 volts
¾ Est. Production Cost: ~$12/chip

10W Ultra-High Efficiency MMIC PA

Simulated MPAR MMIC Performance

Cree GaN Process capable of supporting 
ultra-high efficiency MPAR power amps
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Important Solid State Trends:
• Continuous increase of  the frequency limits, i.e. fT and fmax (III-V’s)
• Increase of output power (wide bandgap transistors)
• Low-cost RF transistors for consumer mass markets (Si-based)

Solid State Trends
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YearCourtesy: 
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MPAR is easily 
within the range 
of silicon IC’s
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mm-wave Silicon

Courtesy of Harish Krishnaswamy at USC



IDEAS Microwave Laboratory
Electrical and Computer Engineering

15

Promise of the Technology

• Recent Demonstrations – 8 element receive only array that is 2 by 3 
mm in Jazz .18 micron SiGe – Works from 6 to 18 GHz (UCSD)

Multichip Module 
Replaced by 
Multireceiver Silicon IC

“motherboard-like RF array integration”

Example of 16 
elements on a chip

http://www.arrowne.com/innov/in82/pics/c8i15_freescale_figure_2.jpg�
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Two-Channel SiGe Transceiver
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• SMI boards have:
– Two independent direct-conversion I/Q Tx/Rx channels per board

– 54 programmable registers 

– Flexibility in gain, filtering, DC offset compensation, etc.

– Programmable RF LOs on each board

Sierra Monolithics (SMI) 2x2 WiMAX Transceiver
(Eight Per Panel)

SiGe integration allows for more than 1 radar channel per chip. Beyond (SOC) System on Chip    
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Tracking Demonstration

Tracking 
demonstrated 
using digital 
beamformer
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Dual Polarization Variation of DAR

The integrated SiGe transceiver is very 
useful for dual polarization

There are two channels on one 
integrated circuit, so one IC handles 
both inputs from the antennas.  
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DAR Dual Polarization Work

Andrew W.’s slide

VH VH

-40 dB isolation between 
polarizations

Measured simultaneous transmit on each 
polarization

Independent waveform synthesis at each antenna 
will allow for compensation of polarization 
mismatches to improve polarization metrics
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Conclusion

•Cost is a risk for the MPAR program

•Leveraging the advances at the component level will be useful for 
pushing the cost curve down

•Massive Integration - SiGe
•High Power Plastic Operation – GaN
•Digital Utilization – Digital at Every Element

-Let the broader electronics world do the heavy lifting

Digital at every element has been demonstrated for a 16 element 
panel.  

A low cost phased array can be built if commercial 
trends and practices are leveraged. 

•Cost is a risk for the MPAR program
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A detailed overview of the array and a demonstration of 
the performance will be shown at 1 PM in room 

Next door, 1 PM
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DAR Version I Subarray Architecture

2) Plastic High Power Packaging
Multi-layer panel and plastic 
packaging designed to house efficient 
GaN T/R modules

5) Synchronization
Digital backend Control board 
designed, laid out, and 
populated in-house

Wrote firmware for FPGAs and 
software for host PC interface

3) Silicon Integration Utilized 
integrated Sierra Monolithics 
2x2 WiMAX SiGe transceiver

1) Antenna Panelization Antenna 
was designed, analyzed for mutual 
coupling, fabricated, and tested

4) Digital Processing Quadrant 
boards perform data conversion 
and element-level processing
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